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Simple scaling analysis of temperature- and stress-dependent viscosity convection with free-slip /_'-///_ .///

boundaries suggests three convective regimes: the small viscosity contrast regime which is similar

to convection in a fluid whose viscosity does not depend on temperature, the transitional regime / ,

characterized by self-controlled dynamics of the cold boundary layer and the asymptotic regime in

which the cold boundary becomes stagnant and convection involves only the hottest part of the lid

determined by a rheological temperature scale• The first two regimes are usually observed in
numerical experiments. The last regime is similar to strongly temperature-dependent viscosity

convection with rigid boundaries studied in laboratory experiments. © 1995 American Institute of

Physics.

I. INTRODUCTION

Studying of a developed high Prandtl number convection
in temperature- and stress-dependent viscosity fluids has

been started a long time ago with applications to the Earth's
mantle. HI Systematic studies done during the last decade

provide a sufficient basis for development of a physical
model of variable viscosity convection. Christensen 12-14 in-

vestigated 2-D temperature-, pressure- and stress-dependent
viscosity convection. Hansen and Yuen t5 studied

temperature-dependent viscosity convection at higher Ray-

leigh numbers. Numerical models of 3-D convection with

temperature-dependent viscosity also becomes more system-
atic; see, for example, Ogawa et al. _

Extensive laboratory experiments on temperature-

dependent viscosity convection with rigid boundaries were

performed recently by Davaille and Jaupart 17who suggested

scaling relations for the heat transport and found a qualitative

agreement with asymptotic boundary layer theories devel-

oped by Morris and Canright TM and Fowler. I'_ However, in

contrast to the predictions of boundary layer theories, con-
vection with free boundaries seems to behave differently and

obey different iaws.lZ-1<2° A simple physical analysis pre-

sented in this paper suggests that with increase of the viscos-

ity contrasts, temperature-dependent viscosity convection

passes through a substantial period of transitional regimes
before it enters the asymptotic regime described by Morris

and Canright ts and Fowler. l'_ The theory reconciles and sys-

tematizes various numerical, laboratory, and analytical re-

sults and suggests scaling relations for all convective re-

gimes. The paper starts with Newtonian viscosity and then

the scaling relations are generalized for non-Newtonian vis-

cosity fluids.

II. ENERGETICS OF CONVECTION

Consider a steady-state Rayleigh-Benard convection in a

cell with approximately equal horizontal and vertical dimen-

sions and with a fixed temperature difference AT between

the boundaries. This convective cell is assumed to be a part

of a periodic structure of an infinite horizontal layer. The

equations of steady-state thermal convection with Bouss-

inesq approximation and with infinite Prandtl number are
(e.g., Refs. 1 and 6):

__ = 01"ijc)p °ePghiT+ , (1)
c)xi Oxj

al" _T

ui ax--_= K 7' (2)

c)Ui
-- =0, (3)
Oxi

where x i are the coordinates, ui is the velocity, p and T are

the pressure and temperature perturbations, cr is the thermal
expansion, g is the acceleration due to gravity, hi is a unit

vector in the direction of gravity, K= k/pcp is the coefficient
of thermal diffusion, p is the density, k is the thermal con-

ductivity, Cp is the heat capacity at constant pressure,

[ Ou_ auj]
rij= rleij=" 1"It_ + _Xif (4)

is the deviatoric stress tensor, bij is the strain rate tensor, and
r/ is the viscosity. The surface temperature is T0=0, the
bottom temperature is T1 = AT. All boundaries are free-slip.

The scaling analysis will use the fact that whatever vis-

cosity law is considered and whatever is the distribution of

viscous dissipation in the layer, the integral viscous dissipa-

tion cl)di,s in the layer is always balanced by the integral
mechanical work done by thermal convection per unit time: 2_

*,liss = jvrij ff--xjdV= FS 1 - -_u Cp

(5)

where V is the volume and S is the surface area of the layer,

F is the heat flux, and Nu is the Nusselt number:

dF
Nu = -- (6)

kAT "

The second part of (5) is valid if Nu>l.

The energetic constraint (5), assumptions about the dis-

sipational structure and the thermal boundary layer relations

will be used to find the scaling laws.
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III. SMALL VISCOSITY CONTRAST CONVECTION

Suppose that the viscosity is Newtonian:

r/= qoexp(- yT), (7)

where % is the viscosity at the cold surface, where T= 0 and

y is a constant. Such a simple exponential function is the

most studied viscosity law. It requires only one non-

dimensional parameter, for example,

p = yA T (8)

in addition to the Rayleigh number used for constant viscos-
ity convection.

If the viscosity contrast is small, convection is similar to

constant viscosity convection: the flow is uniform and the

energy balance (5) can be written as

qi V- -- V, (9)
¢Jp

where d is the layer thickness, u0 is the amplitude velocity,

uo/d is the characteristic strain rate scale and the viscosity

rh = rl0exp( - yTi), (10)

calculated at the interior temperature T, _-A T/2 is the viscos-

ity at which the most of viscous dissipation takes place. This

evaluation of the dissipation integral is based on the largest

scale of motion, meaning that a single Fourier mode is em-
ployed.

The flow is approximately symmetric relative to the

horizontal axis through the center of the cell, so that the

horizontal velocity u 0 near the upper boundary is approxi-
mately equal to the horizontal velocity u l near the lower

boundary. The temperature drop AT across the layer is con-

centrated in two thermal boundary layers of approximately
equal thicknesses:

(Kd) 1/2_o-61-,_, , (11)

and the heat flux is

±T

F-k _. (12)

We obtain

60-6]-d Rai ]/3, Nu--d/6 o, (13)

Uo--Ul _ Kd/6 o, (14)

which are similar to relations for constant viscosity convec-
tion (e.g., Ref. 22) with the Rayleigh number defined at the

interior viscosity r/i :

atgpA Td 3
Rai- (15)

Kr]s

cold boundary layer itself becomes comparable with the vis-

cous drag of the interior region. A self-controlled cold

boundary layer dynamics characterized by an approximate

balance between the viscous dissipation in the cold thermal

boundary layer and the work done by its negative buoyancy

can take place in some parameter range.

To estimate this balance, we assume that the largest re-

sistance to the motion of the cold boundary layer is in the

bend of the cold boundary layer (where it starts sinking) and
that the stresses due to the underlying low viscosity fluid can

be ignored. This region has an area of the order of _. The

length scale of the velocity change there is of the order of

60, so that the strain rate is of the order of Uo/6 o (ignoring a

weak dependence on a logarithmically varying parameter p).
The energy balance is now written as

v, (16)

where 1 is the horizontal size in the direction perpendicular
to the direction of motion, so that V=d21, and the coefficient

1/2 indicates that the work done by the negative buoyancy of
the cold boundary layer contributes approximately 1/2 to the
total energy balance. 2°'21

The other half of the convective work is done by the hot
thermal boundary layer. An almost isothermal flow in the

internal region is driven by approximately the same work per
unit time and dissipates approximately the same amount of

energy per unit time. It has the length scale d and the strain

rate scale up�d, where u l is now the characteristic velocity

in the internal region. Thus, the energy balance for this re-

gion is similar to that for the small viscosity contrast regime:

(Ul)21(_g F
r/i _-V 2 Cp V. (17)

The boundary layer relations depend on characteristic
velocities at the boundaries which are now different for the

upper and lower boundary:

Kd I 1/2 Kd' 1/2

Together with energetic equations and with the assump-

tion that 6o'> 61 they give

6o_dRa ° 1,3, 61 _dRa ° 1/12Ra _ 1/4, (19)

where Rao is defined at the surface viscosity:

o_gpA Td 3
R% - (20)

KT/0

The Nusselt number and the interior temperature are

Nu-_d/( _o+ 61); Ti_AT6o/(_o+61). (21)

IV. TRANSITIONAL REGIME

If the viscosity contrast is large, dissipation in the cold

boundary layer becomes comparable with the dissipation in

the internal region. In other words, the resistance to the mo-

tion of the cold boundary layer due to the deformation of the

V. STAGNANT LID REGIME

In the limit of very large viscosity contrasts, the advec-

tive heat transport due to the motion of the cold boundary

layer becomes negligible compared to the heat transport due
to a much faster convection beneath it. An effectively stag-

nant lid is developed on the top of the convective layer.
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A linear temperature distribution in the lid results in an

exponential growth of the viscosity when approaching the
surface. Because the stresses 7"0 in the lid vary insignifi-

cantly, the strain rate also decays exponentially with the dis-
tance Az from the bottom of the lid:

- r0 r/- t _ r0 r/_ texp( - yVTAz), (22)

where VT_AT/8o is the temperature gradient in the cold

boundary layer and the total temperature difference AT

through the convective layer is taken as the temperature drop

scale in the cold boundary layer.

As a result, convection penetrates into the cold lid only

by a small length determined by the exponential decay con-
stant:

8° 8° (23)
8rh yA T - p

The temperature difference which drives the convective

flow is proportional to the rheoiogical temperature difference
scale

AT,h_ y- l =p- tAT . (24)

Convection beneath the lid is reduced to a constant vis-

cosity convection with an effective driving temperature dif-
ference scale (24). This gives

_o_dpa/3Ra[l/3, _I-P ] _o, Nu-d/_o. (25)

The thickness of the thermal boundary layer can be con-

strained independently with the help of assumption that the

thermal boundary layer is at the margin of convective stabil-
ity (see, e.g., Busse23). For asymptotically large viscosity

contrasts, the critical Rayleigh number is equal to: 24

Rat.cr = 20.9 p4, (26)

where index "1" denotes the Rayleigh number defined at the

viscosity of the bottom.

Applying this criterion to the cold boundary layer we
require

ctg p A T o_oo
- Rat,c_, (27)

Kr/i

where rh is used as the viscosity of the bottom of the bound-

ary layer and thus

tSo_ dp g/aRa_- t/3 , (28)

which coincides with (25).

Note, that instability occurs not in the entire boundary

layer but only in a thin sublayer near the bottom, provided
eP>eS_-3× 10 3. The thickness of the unstable sublayer is

equal to24

Zsub= -- . (29)
P

The scale 8o/p characterizes the thickness of the thermal

boundary layers in the active part of the convective ceil,

8t _ 8o/p, and is in agreement with (23) and (25).

1000

u 0

100

50

Nu

20

10

110(

I0

' /.
I _T'tL o_

.T._ 2_.-
•:"i . : :-. 2000

= 7. _ . = u t000

o o o o 250

H

I I I I

105 106 107 108 109

Ro T

/

2 i = = i

10 4 10 5 10 6 10 7 10 8 0 9

Ro T

l_m

I OOO

100

1

0.9
T

0.8

0.7

0.6

0.5

"/
I01r 0 i i i I( 105 106 10 7 10 8 109

ROT

i i i i

nl

O"4110 I J I 14 IO s 10 6 10 7 tO 8 10 9

Ro T

FIG. 1. The fitting curves (solid lines) describing Newtonian temperature-

dependent viscosity convection are compared with numerical data. The av-

eraged surface velocity u0, the Nusselt number Nu, the maximum of

stream-function _, and the average temperature T are shown as functions

of Rat. The Rayleigh number Ra, is fixed for each curve, st) that the

viscosity contrast increases along each curve. Christensen's j3 numerical re-

suits for Rao=4000, 80(X), 16000, 320(X), 64(XXl, 128(XX) are shown with

solid boxes connected with dolled lines. The data for

Ra0=250,500,1(}00,2000 are shown with different symbols. The convective

regimes indicated are: 1--the small viscosity contrast regime, ll--thc tran-

sitional regime, and Ill--the stagnant lid regime. In the third regime, all

theoretical curves are very close to each other and only one asymptotic

curve is shown.

Vl. COMPARISON WITH EXPERIMENTS

To compare the scaling laws with numerical and labora-

tory experiments, the formulae are non-dimensionalized us-

ing d for the length scale, k/d for the velocity scale, and A T

for the temperature scale. This comparison is sometimes

problematic because the data are plotted with the help of
different non-dimensional numbers. The Rayleigh number

Rar based on the viscosity calculated at the volumetrically
averaged temperature T and the Rayleigh number Ra0 were
used by Christensen 12-]4 and Hansen and Yuen. ]5 The theo-

retical curves can be presented in terms of 1" and Ra T instead

of T i and Ra, using an approximate relation between ]" and

T, :

I"_ Ti+ (0.5 T/-t- 1 )d_0 . (30)

This assumes a linear temperature distribution in thermal

boundary layers.
The correction for the difference between RaT and Rai is

important for the temperature and for the maximum of
streamfunction because they both strongly depend on T,.

The surface velocity and Nusseit number are not influenced

by this correction.
The fit to Christensen's ]3 data (the surface velocity, the

Nusselt number, the maximum of streamfunction, and the

average temperature) with the help of the theoretical depen-
dences is shown in Fig. 1. The fitting formulae are compared
with the theoretical ones in Table I. The maximum of stream-
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TABLE I. Theory versus experiments: Newtonian viscosity.

Parameter Theory Fit

1. Small viscosity contrast regime

6. - Ra, "_3 1.85 Ra, "3185

u0 - b-i_2 0.44581_ 2

@,, _8 t e 0.17181 2

I!. Transitional regime

_0 _ Rao °333 3.2 Rao-°41

61 --Ra, 0us3 Ra i ,25 1.524 R%°12Ra7 °21

uo _ 8o z (i.52802

_bm _81 2 0.1181 2

Ill. Stagnant lid regime"

81 ) _pl 333 Ra_O 333 1.85pl 31SSRai o31s5

d I _p xSi) p 18o

&., _812 0.1 lSl 2

All regimes

Nu (8o+8t) I (8o+80 ,

r (1+8t/80) i (1+81/80) J

_The fitting coefficients are poorly constrained.

function calculated by Christensen _3 is approximately pro-

portional to the velocity near the bottom (the most active
region):

_b,,,_ u t . (31)

Figure 2 shows the theoretical curves and the data from

Christensen, 13Ogawa et al. to (3-D calculations), and Hansen

and Yuen. 15 The scaling law suggested by Davaille and

Jaupart 17 for convection with rigid boundaries and a bifurca-
tion observed by Ogawa et al. 16 are also shown.

This comparison shows that the stagnant lid regime is

similar to convection with rigid boundaries and the numeri-

cal curves asymptotically approach this regime. On the other
hand, the transitional regime in convection with rigid bound-

aries is much shorter as indicated by the experiments] 7 This

is probably because the motion of the cold boundary layer

has a larger drag over the entire upper boundary and convec-

tion enters the stagnant lid regime at smaller viscosity con-
trasts.

A qualitative agreement between the data from Ogawa

et aI.16 and the corresponding theoretical curve plotted in the

axes used by Ogawa et al. 16supports the suggestion that the

bifurcation observed by Ogawa et al. 16 is located at the

boundary between the transitional and stagnant lid regime
(Fig. 3).

The convective regimes are summarized in Fig. 4. The
boundaries between the regimes are plotted in terms of the

Rayleigh number Rat, based on the bottom viscosity rh,

and the viscosity contrast r/0 /r/l = exp(p). These coordinates

allow to plot also the stability curve. To transform Ra, to

Rat, we use the fact that in small viscosity contrast regime

Ra,_Ratexp(p/2). In the stagnant lid regime, the viscosity

drop across the lower thermal boundary layer is a
constant, tsJ9,25 which is approximately equal to 4, so that

Rai_ Rat/4 and the viscosity drop across the lower boundary

layer is exp(p)/4.
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FIG. 2. The fitting curves are plotted together with numerical and experi-

mental data (divided for convenience into two figures) from Christensen B

(the same as in Fig. 1), Ogawa et al. t6 (triangles, Ra0=103), Hansen and

Yuen 15 (solid circles, Ra o = 104,105,10 °, 107,10s). The curve correspond-

ing to the scaling law suggested by Davaille and Jaupart 17 for convection

with rigid boundaries is shown with a heavy solid line. A bifurcation-like

transition from whole-layer to stagnant lid convection observed by Ogawa

et al. 16 is marked with an open circle (it is shown in other coordinates as

well, Fig. 3).

The boundary between small viscosity contrast regime

and transitional regime is determined by the condition that

the resistance of the cold boundary layer to its motion be-

comes comparable with the resistance of the interior region.

This boundary can be defined with the help of intersection of

the curves for these two regimes.
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FIG. 3. The data showing the transition from whole-layer to stagnant lid

convection (open and solid triangles respectively) lh are plotted in the coor-

dinates used by Ogawa et aL: z6 Nusselt number versus the viscosity contrast

exp(p). The Rayleigh number Ra I = 3.2 × 106 based on the viscosity of the

bottom is fixed. The corresponding theoretical curve is shown with a solid
line.
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FIG. 4. The three convective regimes are shown in Ral- exp(p) axes: l--

the small viscosity contrast regime, It-- the transitional regime, and III--the

stagnant lid regime. The boundary between transitional and stagnant lid

regimes is determined by the instability mode change in the cold boundary

layer. The boundary for the onset of convection is also shown. The large

solid circle separates the stability curve by a lower part where instability

occurs in the entire layer and an upper part where instability occurs in the

sublayer. Approximate parameter ranges studied in the numerical experi-
ments are indicated (Christensenl3--dashed contour, Hansen and Yuen tL-

dotted contour, and the bifurcation-like transition observed by Ogawa

et al. 16 is shown with an open circle). A formal location of the Earth's

mantle is shown with a solid contour assuming rk= 10 22 P (Ref. 33). Be-

cause the viscosity of the mantle obeys the Arrhenius law, not the exponen-

tial one, the parameter p is calculated as p=EAT/(RT_) for the range of

activation energies E corresponding to different creep mechanisms. 34 A for-

mal viscosity contrast across the lithospheric plates would be many orders of

magnitude larger provided the viscosity law could be extrapolated up to the
surface.

The boundary between the transitional regime and the

asymptotic regime is more uncertain. It could be determined

by the condition that the conductive heat transport through

the lid becomes comparable with the advective heat transport
due to the motion of the lid. However, such a formal calcu-

lation does not take into account a change in the instability

mode in the cold boundary layer, from instability in the en-

tire thermal boundary layer to instability in the sublayer. The

change in the instability mode causes a stagnation of the

uppermost part of the cold boundary layer and as a result, an

earlier transition to the stagnant lid regime. The alternative

boundary between the transitional regime and the stagnant
lid regime is determined by the condition that the viscosity

contrast in the cold boundary layer is equal to the critical

value, exp(8)-3x 103 (this is the boundary shown in Fig. 4).

This boundary passes precisely through the bifurcation ob-
served by Ogawa et a1.16 This implies that in the bifurcation

point, the viscosity contrast across the cold boundary layer

must be equal to the critical one (-3 × 10 3) and the rest of

the viscosity drop (a factor of 3-4) must be in the bottom

boundary layer. This is in agreement with Ogawa et al.'s J6

data. A transition resembling the transition to stagnant lid

regime was also observed in previous works on linear and
mean-field temperature-dependent viscosity convection. 2_ 28

The critical viscosity contrasts reported are close to the value
indicated above.

The scaling relations obtained can be compared with the

predictions of boundary layer theories developed by Morris
and Canright 21 and Fowler 22 for the stagnant lid regime.

Qualitatively they suggest similar results. However, they pre-

dict somewhat weaker dependence of the Nusselt number on

the Rayleigh number, suggesting the power of 1/5. The
above simple scaling analysis, the experiments, t7 and the sta-

bility criterion give 1/3. The formal origin of 1/5 power in
thermal boundary layer theories is essentially similar to that

in constant viscosity convection with rigid boundaries. For

constant viscosity, the disagreement between the boundary

layer theory and the experiments has been known for a long

time: the boundary layer theory predicts 1/5 (see, e.g.,
Roberts22), while experiments give values which are closer

to 1/3 rather than to 1/5 (see, e.g., Rossby29). A similar prob-

lem occurs in non-Newtonian viscosity convection as well
(see below). This can be due to various reasons: the bound-

ary layer solutions can be unstable, the aspect ratio can de-

pend on the Rayleigh number and three-dimensional, time-

dependent convection could be different from simple models
usually considered (see also Ref. 30).

VII. NON-NEWTONIAN VISCOSITY CONVECTION

The scaling theory can be extended to non-Newtonian
viscosity convection, although much less data are available
in this case.

The viscosity law is supposed to be as follows:

b bt/.___ [
r/=_i--_-Texp(-yT)= l,,_l)/nexp/--_-_ ), (32)

where b, y, and n> 1 are constants and TII=(7"_)/2) I/2 is the
second invariant of the deviatoric stress tensor, and

e,=(e2i/2) 1/2 is the second invariant of the strain rate ten-
SOL

A. Small viscosity contrast regime

In the small viscosity contrast regime, the energy bal-
ance (5) is written as

bl/nexp( - ,Ti/n)( _) 2 ctgF(uo/d)_,_]l m V- -- V. (33)Cp

This can be interpreted as viscous dissipation (9) in a

Newtonian fluid with an apparent viscosity

bl/" ( - 7Ti (34)
rli_ (uo/d) (n t)/"exp n t

calculated at the interior temperature Ti_AT/2 and at the
strain rate scale Uo/d.

The boundary layer equations (12) and (11) remain with-

out changes.
We obtain

_()-- (_l-dRann/ln+ 2)=dRao (" l)/(n+ 2)Ra i 1/(n+2),

(35)

where the Rayleigh numbers Rao, Ra n and Rai are defined as
follows:
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otgpA Td t" + 2 )/,,

Ra0= Kl/,_bl/,, , (36)

agpA Td _n+2)/,,

Rai = Kt/nb l/nexp( _ yTi ) = Rat) e rT_, (37)

agpA Td _"+2),_,,

Ra,, = El,,, b lmexp( _ .YTi/n )
= Rao e rr` ". (38)

B. Transitional regime

In the transitional regime, the energy balance (5) is now
written as

 ot'41 V, (39)
b -_-ot t/oJ 2 cp

which can be interpreted as viscous dissipation (16) in a

Newtonian fluid with an apparent viscosity

b l/n

rlu- (uo/8o)(,_ l)/, (40)

calculated at the surface temperature T=0 and at the strain

rate scale u 0/80. As in Newtonian viscosity convection, dis-

sipation is assumed to be concentrated in the bend of the

upper boundary layer with area of the order of _.

The dissipation in the interior region is calculated in the

same way as for the small viscosity contrast regime:

/'l --v ,4,, ,< : -d- v-_ cp

The results are as follows:

_o_dRac_n..3, 8t_dRaotnZ_3,, 31'_(,,+l)Ra_l/2tn+l)
(42)

C. Stagnant lid regime

In the stagnant lid regime, dissipation in the central re-

gion is

be __rim V_ -- F. (43)
¢p

Convection beneath the lid is reduced to small viscosity

contrast convection with an effective temperature difference

scale (24). The following relations are obtained:

t_o_dp2(n+ l )/(n+ 2)Rao (n- l)/(n+ 2)Ra, 1:(,,+2)

= dp2(,+ l )/_,,+ Z)Ra_,,/¢,, + 2), (44)

ai _p - nao. (45)

Scaling laws for Newtonian viscosity convection in the
stagnant lid regime can be obtained with the help of asymp-

totic boundary layer theories) 8'n_The problem can be treated

analytically for non-Newtonian viscosity as well, provided

the shear flow parallel to the bottom of the lid is dominant

near the bottom of the lid (one of the main assumptions in

boundary layer theories). With Morris and Canright's 18 as-

sumption (see also Ref. 19) that the bottom of the lid is flat,
we find

(_o_dp3!n+ lt/(2n _3)Ra n- n:(2n+3)

=dp3i"+t)/_2"+3)Rao_n-ll/(2n+3)Ra_ I/_2"+3) (46)

With Fowler's t" assumption that the slope of the cold lid

is of the order of 8o/d (variations in the lid thickness are

comparable with the lid thickness itself) we find

80_dpRann:(2n+3)=dpRao !n l )/(2n +3)Ra i- 1/(2n+3),

(47)

which has a slightly different dependence on the parameter p

compared to Eq. (46), both for Newtonian and non-

Newtonian viscosity.

VIII. BOUNDARY LAYER STABILITY ANALYSIS: NON-
NEWTONIAN VISCOSITY

As for Newtonian viscosity convection, it is useful to

obtain scaling laws independently, based on the boundary

layer stability analysis. Consider first onset of convection in

a layer with the thickness d and with a strongly temperature-

dependent viscosity fluid. As for Newtonian viscosity
fluids, 24 we postulate that instability occurs in the sublayer

with maximum Rayleigh number.
Such a sublayer must be located at the hot bottom, where

the viscosity is smallest. The Rayleigh number for the sub-

layer is

+'):"
Rasub-- Kl/"bl/nexp[ --p( 1 -Z_ud2d) ] ' (48)

where Zsub is the thickness of the sublayer, VT= AT/d is the

temperature gradient in the layer and the effective viscosity
is calculated at the mean temperature of the sublayer.

The requirement 0 Rasub/CgZsub=0 gives the sublayer

thickness at which the Rayleigh number is maximum:

4(n+l)
Zsub, m- d. (49)

P

lf p<4(n+ 1), the maximum does not exist and instability

occurs in the entire layer. If p>4(n + 1), instability occurs

in the sublayer. For n=3, it requires e't'>el6_9X 106, i.e.,

3 × 103 larger than for Newtonian viscosity.

The onset of convection in the entire layer is determined

by the onset of convection in this, the most unstable, sub-

layer:

Ras_b= Racr( n ), (50)

where Ra,:r(n) is the critical Rayleigh number for a fluid

whose non-Newtonian viscosity does not depend on tem-

perature.
The criterion (50) can be written in terms of the critical

Rayleigh number for the entire layer. This Rayleigh number

is convenient to define at the bottom viscosity, as in the

criterion (26) for Newtonian viscosity fluids:

otpg A Td In+ zl/n

Ral = K 1'/" b l/nexp( - p/n ) " (51)

We obtain:
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FIG. 5. The critical Rayleigh number for the onset of convection in power-

law viscosity fluids is shown as a function of n i. Three solid curves

correspond to various numerical calculations and the open boxes represent
an experimental data set.31'3z A linear extrapolation of all these data, Eq.

(54), is indicated with a dashed line.

e ]2(n+l)/n

Rat.cr=Rae,(n)[ _ ] p2(n+ L)/,, (52)

Assuming that the boundary layer is at the margin of

convective stability, i.e.,

apg A T _ n + 21/"

K1/"b Unexp( - p/n) = Ra],cr, (53)

we immediately obtain (44).

The critical Rayleigh number Racr(n ) for non-

Newtonian viscosity with no temperature dependence can be

estimated using numerical and laboratory data. 31'32 For rigid

boundaries, a linear extrapolation of those data suggest that

(Fig. 5)

Racr(n)_Racr(1)t/nRacr(OO)[n 1)/n, (54)

where Racr(1)_ 1708 is the critical Rayleigh number for a

constant viscosity fluid and Racr(Oo)_-20 is the fitting coef-

ficient corresponding to a formal asymptotic critical Ray-

ieigh number in the limit n---+oo. Assuming that the same

functional form is approximately valid for the onset of con-

vection in the sublayer, we use an exact value

Racr(1)=1568 which is found numerically 24 for n = 1 and

put Racr(OO)_20 estimated above for rigid boundaries, the

exact value of which does not substantially influence the

results.

It is worth noting that the onset of convection in power-

law fluids is always a finite amplitude instability because the

viscosity depends on the amplitude of initial perturbations

and goes to infinity when the perturbations approach zero.

For such fluids, the meaning of the boundary between con-

ductive and convective regimes (as implied in Refs. 31, 32

and in this section) is that if the Rayleigh number is below

some critical value, no convective motion is possible with

any initial conditions; if it is above this critical value, con-

vection is possible but initiation of convection requires suf-

ficiently large initial perturbations.

TABLE It. Theory versus experiments: Non-Newtonian viscosity (n = 3).

Parameter Theory Fit

I. Small viscosity contrast regime

8o -R%_ °4 RaT °2 2.0Rao "38 Ra, o 17

61 - 6o 8(,

uo - 8o2 0.45 6(_2

¢,,. _612 0.1761 z

II. Transitional regime

80 - Ra° ] 3.3Ra0 o.83

61 _ R% 0.625Ra,-o.125 1.65 Ra_ 0.54 Ra i oo_2

u o _6(72 0.5460 2

@,a _12 0.1161 2

I!I. Stagnant lid regime _

60 _p_ _'Rao °4 Ra/°2 2.0p 155Ra, "3_ Ra_ °17

61 _p 160 p 16o

All regimes
Nu (6o+61) t (6u+61) I

T (1+61/60) I (1+61/61)) I

_ln the absence of data, the "fit" uses the coefficients found in the small

viscosity contrast regime.

IX. COMPARISON WITH EXPERIMENTS:

NON-NEWTONIAN VISCOSITY

Christensen's 14 data are fitted with the help of equations

presented in Table II and plotted in Fig. 6 together with the

fitting curves for the first two regimes.
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FIG. 6. The numedcaP 4 (solid boxes) and corresponding theoretical {solid

lines) dependences of uo, Nu, tb,,, and T as functions of Rar_Ra _ are

shown for non-Newtonian (n =3) temperature-dependent viscosity convec-

tion. The Rayleigh number Rao is fixed along each curve

(Ra, = 50,100,250,500,1000,2000). Two convective regimes are: 1--the
small viscosity contrast regime and II--the transitional regime. The numeri-

cal data for Rao=32 (triangles) do not obey the formulas suggested for
these two regimes and, probably, indicate a transition to the third regime.

This is shown in Fig. 7.
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